DEPARTMENT OF PHYSICS WITH CA

PROGRAM OUTCOMES

Students graduating with a B.Sc. in Physics should be able to:

- **PO1.S**tudents will demonstrate proficiency in mathematics and the mathematical concepts needed for a proper understanding of physics.
- **PO2**.Students will demonstrate knowledge of selected topics from classical mechanics, quantum mechanics, quantum mechanics, electromagnetism, quantum mechanics, and thermal physics, and be able to apply this knowledge to analyze a broad range of physical phenomena.
- **PO3**.Students will show that they have learned laboratory skills, enabling them to take measurements in a physics laboratory and analyze the measurements to draw valid conclusions.
- **PO4**.Students will be capable of oral and written scientific communication, and will prove that they can think critically and work independently.

PROGRAM SPECIFIC OUTCOMES

- **PSO-1**.Students will demonstrate proficiency in mathematics and the mathematical concepts needed for a proper understanding of physics.
- **PSO-2.**Students will demonstrate knowledge of classical mechanics, electromagnetism, quantum mechanics, and thermal physics, and be able to apply this knowledge to analyze a variety of physical phenomena.
- **PSO-3**.Students will show that they have learned laboratory skills, enabling them to take measurements in a physics laboratory and analyze the measurements to draw valid conclusions.
- **PSO-4.**Students will be capable of oral and written scientific communication, and will prove that they can think critically and work independently.

COURSE OUTCOMES

- **CO1.**Understand and define the laws involved in mechanics
- CO2.Gain deeper understanding of mechanics and its fundamental concepts
- **CO3.**Explain the notion of degrees of freedom and identify them for a given mechanical system.

ALLIED MATHEMATICS-I

CO1. Understand the concepts of algebra, trigonometry, differitiation, integration **CO2.** Apply the mathematical knowledge to solve problems

THERMAL PHYSICS AND ACOUSTICS

- **CO1.**Learning the basics concepts of elasticity, surface tension, gravitation, viscosity and sound
- **CO2.**Understand the concepts of properties of matter and to recognise their applications in various real problems
- **CO3.**Describe the key evidence for the breakdown of the classical description of the properties of matter
- CO4. Recall the principles and basic equations and apply them to unseen problems
- **CO5.**Formulate the equations for unique cases in the diverse categories of material systems

ALLIED MATHS-II

CO1.Understand the concepts of vector differentiation, laplace transforms differitiation, fourier series

CO2. Apply the mathematical knowledge to solve problems

PHYSICS CORE PRACTICAL-I

- **CO1.**Apply knowledge of mathematics and physics fundamentals and an instrumentation to arrive solution for various problems.
- **CO2.**Understand the usage of basic laws and theories to determine various properties of the materials given.
- **CO3.**Understand the application side of the experiments
- **CO4.**Use standard methods to calibrate the given low range voltmeter and ammeter and to measure resistance of the given coil and various physical quantities.
- **CO5.**Use of basic laws to study the spectral properties and optical properties of the given prism.

OPTICS

- **CO1.** List the basic ideas in image formation and the defects involved.
- **CO2.** Understand the central concepts and basic formalisms of interference, ffraction, polarization and basics of spectroscopy.
- **CO3.** Use of tools needed to formulate problems in optics and spectroscopy.
- **CO4.** Gain Fundamental knowledge in lasers, holography and Raman effect.
- **CO5.** To impart knowledge related to the concepts of spectroscopy.

BASIC ELECTRONICS

- **CO1.** Be familiar with the basic concepts of construction and working of electronic devices and optical fibers
- **CO2.** Apply the knowledge to understand the working of amplifiers, oscillators and multivibrators
- CO3. Understand the principles of modulation and demodulation
- CO4. Apply the knowledge to understand the working of special types of diodes
- CO5. Apply the principles of feedback in amplifiers and oscillators

DATA STRUCTURE

- **CO1.**Describe how arrays, records, linked structures, stacks; queues, trees, and graphs are represented in memory and used by algorithms
- **CO2.**Describe common applications for arrays, records, linked structures, stacks, queues, trees, and graphs
- CO3. Write programs that use arrays, records, linked structures, stacks, queues, trees, and graphs
- CO4. Compare alternative implementations of data structures with respect to performance

OBJECT ORIENTED PROGRAMMING USING C++

- **CO1.** Understand the fundamentals of C++ programming
- **CO2.** Understand the concepts of operators and arrays
- **CO3.** Understand the role of structure and pointers in the program.
- **CO4.** Develop a greater understanding of the issues involved in programming language design and implementation

CO5.Write C program for simple applications of real life using structures

ATOMIC PHYSICS

- **CO1.** Explore the fundamental concepts of physics
- **CO2.** Acquire knowledge of the fundamental physics underpinning atomic and nuclear physics
- **CO3.** Understand the concepts and potential applications of atomic and nuclear physics
- CO4. Carry out the practical by applying these concepts
- CO5. Get depth knowledge of physics in day today life.

DATA BASE MANAGEMENT SYSTEM

- **CO1.**Define program-data independence, data models for database systems, database schema and database instances
- **CO2.**Identify Structure Query Language statements used in creation and manipulation of Database
- CO3.Identify the methodology of conceptual modeling through Entity Relationship model
- CO4. Analyze and design a real database application

OPERATING SYSTEM

- CO1.Allocate Main Memory based on various memory management techniques
- CO2.Compare Memory allocation using Best fit, Worst fit, and first fit policies
- CO3. Apply page replacement policies for dynamic memory management
- CO4. Compare various device scheduling algorithms
- **CO1.**Apply knowledge of mathematics and physics fundamentals and an instrumentation to arrive solution for various problems.
- **CO2.** Understand the usage of basic laws and theories to determine various properties of the materials given.
- **CO3.** Understand the application side of the experiments
- **CO4.** Use standard methods to calibrate the given low range voltmeter and ammeter and to measure resistance of the given coil and various physical quantities.

CO5. Use of basic laws to study the spectral properties and optical properties of the given prism.

PHYSICS CORE PRACTICAL-II

NUCLEAR AND PARTICLE PHYSICS

- **CO1.** Acquire knowledge of the fundamental physics underpinning atomic and nuclear physics
- CO2. Understand the concepts and potential applications of atomic and nuclear physics
- CO3. Apply general considerations of quantum physics to atomic and nuclear system
- CO4. Analyze production and decay reactions for fundamental particles
- **O5.** Expand and evaluate the theoretical predictions for nuclear reactions.

SOLID STATE PHYSICS

- **CO1.** Be able to account for interatomic forces and bonds
- CO2. Have a basic knowledge of crystal systems and spatial symmetries
- **CO3.** Be able to account for how crystalline materials are studied using diffraction, including concepts like the Ewald sphere, form factor, structure factor, and scattering amplitude.
- CO4. Be able to perform structure determination of simple structures
- **CO5.** Understand the concept of reciprocal space and be able to use it as a tool know the significance of Brillouin zones

PROGRAMMING IN JAVA

- **CO1**. Identify Java language components and how they work together in applications
- CO2.Understand how to design GUI components with the Java Swing API
- CO 3.Learn Java generics and how to use the Java Collections API
- **CO 4.**Understand how to design applications with threads in Java.

DISCRETE MATHEMATICS

CO1. To appreciate the basic principles of Boolean algebra, Logic, Set theory,

- CO2. Permutations and combinations and Graph Theory.
- CO3. Be able to construct simple mathematical proofs
- **CO4**. Be able to understand logical arguments and logical constructs. Have a better understanding of sets, functions, and relations.

ELECTRICITY AND ELECTROMAGNETISM

- CO1. Recognize basic terms in electricity and magnetism
- CO2. Understand the laws of electrostatics and magnetostatics
- **CO3.** Apply theorems to construct and solve electrical circuits.
- **CO 4.** Ability to design and conduct experiments as well as to analyze and interpret data
- **CO 5.** Build up strong problem solving skills by effectively formulate a circuit problem into a mathematical problem using circuit laws and theorems

RELATIVITY AND QUANTUM MECHANICS

- **CO 1.** Provide the students with an idea of relativity which are essential tools in problem solving.
- **CO2.** Provide elementary ideas on classical mechanics and will be able to write equations for real time problems using classical mechanics.
- CO3. Recognize basic terms in Quantum Mechanics.
- **CO4.** Understand the basic principles of quantum particles.
- CO5. Apply basics to construct and solve one particle equation.
- **CO6.** Ability to design and construct particle equation in the free and bound states as well as to analyze and interpret the results.
- **CO7.** To understand the fundamentals and concepts in the special theory of relativity

MATHEMATICAL AND NUMERICAL METHODS

- **CO1.**Demonstrate understanding of common numerical methods and how they are used to obtain approximate solutions to otherwise intractable mathematical problems.
- **CO2.** Apply numerical methods to obtain approximate solutions to mathematical problems.

CO3.Derive numerical methods for various mathematical operations and tasks, such as interpolation, differentiation, integration, the solution of linear and nonlinear equations, and the solution of differential equations.

MICROPROCESSOR FUNDAMENTALS

- CO1. Basic ideas on microprocessor, memory and I/O devices
- **CO2.** Be familiar with the basic concepts of microprocessor architecture and interfacing
- CO3. To impart skills in the programming instruction sets of microprocessor
- **CO4.** Apply the programming instructions to perform simple programs using microprocessor
- CO5. Finding solution for real time applications

PHYSICS CORE PRACTICAL –(GENERAL)

- **CO1:** Measure the temperature coefficient of resistance of a given wire by P.O box method.
- CO2: Determine the frequency of the tuning fork by using Sonometer
- CO3: Determination of specific resistance of unknown coil by Carey Foster Bridge
- CO4: Compare the emf's of two given primary cells using a potentiometer.
- **CO5**: Analyze the magnetic dipole moment of a bar magnet and horizontal intensity of earth's magnetic field using a deflection magnetometer.
- **CO6**: Measure the magnetic dipole moment of a bar magnet using a deflection magnetometer by Tan C position.

PHYSICS CORE PRACTICAL -ELECTRONICS

- CO1. Basic laws and theories involving diodes, transistors, solar cells, etc.,
- CO2. Understand the given concepts and its physical significance
- CO3. Apply the theory to design the basic electrical circuits
- Analyze the response of these devices using the circuits constructed.
- **CO4.** Qualitative and quantitative analysis of chlorophyll, proteins, etc., Use of these basic circuits to create amplifier circuits, oscillator, regulated power
- **CO5.** Use of these basic circuits to create amplifier circuits, oscillator, regulated power supplies etc.,

PHYSICS CORE PRACTICAL -MICROPROCESSOR

- **CO1.** Defining the primary functions of 8085 ALP and basic principles of C programming
- **CO 2.** Understand the given concepts and its physical significance
- **CO 3.** Apply the theory to find the solutions of practical problems
- **CO 4.** Analyze the problem studied through analytical calculation